Cloud Executor
cc.CloudExecutor
CloudExecutor represents a configuration for executing a Covalent workflow on the Covalent Cloud. This class allows users to configure the resources (such as the number of CPUs, memory, GPUs, and GPU type) and the software environment for a Covalent workflow that will be executed on the Covalent Cloud. The time limit for the workflow execution can also be set.
env
Name of the software environment to be used for the workflow. Defaults to “default”.
Type
str, optional
time_limit
Time limit for the workflow execution, in seconds or as a timedelta. Defaults to 1800s (30 minutes). Human-readable strings for example '5 hours and 45 minutes' or '05:45:00' are also accepted.
Type
Union[str, int, timedelta], optional
settings
Settings object to be used for the workflow. Defaults to the global settings object.
Type
Settings, optional
validate_environment
Whether to validate the environment before dispatching the workflow. Defaults to True.
Type
bool, optional
Examples
# create a CloudExecutor with default resource configuration
# executor = CloudExecutor()
# create a custom CloudExecutor with specified resources and environment
# executor = CloudExecutor(
# num_cpus=4,
# memory=2048,
# num_gpus=1,
# gpu_type="NVIDIA-Tesla-V100",
# env="my_custom_env",
# time_limit="in 30 minutes" # 30 minutes
# )
import covalent as ct
from covalent_cloud import CloudExecutor
cloud_executor1 = CloudExecutor(num_cpus=1, memory=1024)
cloud_executor2 = CloudExecutor(num_cpus=2, memory=2048)
cloud_executor3 = CloudExecutor(num_cpus=1, memory=512)
# Define manageable tasks as electrons with different cloud executors
@ct.electron(executor=cloud_executor1)
def add(x, y):
return x + y
@ct.electron(executor=cloud_executor2)
def multiply(x, y):
return x * y
@ct.electron(executor=cloud_executor3)
def divide(x, y):
return x / y
# Define the workflow as a lattice
@ct.lattice
def workflow(x, y):
r1 = add(x, y)
r2 = [multiply(r1, y) for _ in range(4)]
r3 = [divide(x, value) for value in r2]
return r3
# Import the Covalent Cloud module
import covalent_cloud as cc
# Dispatch the workflow to the Covalent Cloud
dispatch_id = cc.dispatch(workflow)(1, 2)
result = cc.get_result(dispatch_id, wait=True)
print(result)